
Tools for making faster
and better looking

Shiny apps

Carson Sievert
Software Engineer, RStudio
Slides bit.ly/wb-shiny-2021

@cpsievert

https://bit.ly/wb-shiny-2021

Shiny v1.6 major features

• Persistent caching via new bindCache()
function

• Improved theming support via new {bslib} &
{thematic} packages

• Accessibility improvements and many bug
fixes

For details, see the blog post

https://blog.rstudio.com/2021/02/01/shiny-1-6-0/

Shiny v1.6 major features

• Persistent caching via new bindCache()
function

• Improved theming support via new {bslib} &
{thematic} packages

• Accessibility improvements and many bug
fixes

Live app

https://connect.rstudioservices.com/explore_your_weather

weatherData !<- reactive({
 fetchData(input$city)
 })

weatherData !<- reactive({
 fetchData(input$city)
 }) %>%
 bindCache(input$city)

weatherData !<- reactive({
 fetchData(input$city)
 }) %>%
 bindCache(input$city)

output$plot !<- renderPlot({
 plot(weatherData())
 })

weatherData !<- reactive({
 fetchData(input$city)
 }) %>%
 bindCache(input$city)

output$plot !<- renderPlot({
 plot(weatherData())
 }) %>%
 bindCache(weatherData())

See more in the app story

https://shiny.rstudio.com/app-stories/

Previous cities are instantaneous!

reactive(!!...) %>%
 bindCache(input$city)

renderPlot(!!...) %>%
 bindCache(input$city)

renderText(!!...) %>%
 bindCache(input$city)

plotly!::renderPlotly(!!...) %>%
 bindCache(input$city)

Configuring the cache

Size: Default cache size is 200 MB in memory.

Scope: By default, memory cache is shared across all
user sessions, but may be scoped to each user.

Lifetime: A memory cache is discarded when the app
exits or restarts. A disk-based cache can persist across
app restarts, and can be shared among multiple
processes with Connect or Shiny Server Pro.

For details, see bindCache()’s reference

https://shiny.rstudio.com/reference/shiny/latest/bindCache.html

Shiny v1.6 major features

• Persistent caching via new bindCache()
function

• Improved theming support via new
{bslib} & {thematic} packages

• Accessibility improvements and many bug
fixes

Before we get into usage, let’s discuss Bootstrap CSS & Sass

Shiny’s default UI is powered by Bootstrap

• An open source CSS framework, originally
started at Twitter

• Now ubiquitous: used by millions of websites &
top 10 project on GitHub (by stars)

• Easy to customize (if you’re a web programmer)
• {bslib} package makes customization easy

via R

https://getbootstrap.com/

bootstrap.css

bootstrap.css

bootstrap.css

bootstrap.css

bootstrap.css

bootstrap.css

$primary: #337ab7

Sass is a better way to write CSS

styles.scss styles.css

sass compiler

$primary: #337ab7;

a {
 color: $primary;
 text-decoration: n
}

button {
 color: $primary;
}

a {
 color: #337ab7;
 text-decoration: n
}

button {
 color: #337ab7;
}

Sass is a better way to write CSS

styles.scss styles.css

sass compiler

$primary: #337ab7;

a {
 color: $primary;
 text-decoration: n
}

button {
 color: $primary;
}

a {
 color: #337ab7;
 text-decoration: n
}

button {
 color: #337ab7;
}

The {sass} R package provides a
general Sass compiler for R

https://rstudio.github.io/sass/

The {bslib} R package

• Easily customize Bootstrap Sass from R
• Works with Shiny, R Markdown,
{flexdashboard}, etc

• Seamless upgrading from Bootstrap 3 to 4 (and
beyond)

• Easily leverage ‘pre-packaged’ Bootswatch
themes

rstudio.github.io/bslib

https://rstudio.github.io/bslib/

Start using {bslib} with Shiny

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 !!...
)

Use with any fluidPage(),
navbarPage(), or
bootstrapPage()!

Start using {bslib} with Shiny

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 !!...
)

Defaults to currently
recommended version for

new apps

Bootstrap versioning

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(version =),
 …
)

Bootstrap 4 is currently
recommended

Bootstrap versioning

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(version = 4),
 …
)

Specify version for better
reproducibility (default may

change to 5, 6, etc)

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(version = 4),
 …
)

Bootstrap versioning

Shiny currently defaults
to Bootstrap 3

Legacy apps

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(version = 3),
 !!...
)

21 Bootswatch 4
themes available!

Bootswatch themes

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(
 bootswatch = “minty”
),
 !!...
)

Custom base colors

Dark background,
Light foreground

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(
 bg = "#121212", fg = "#E4E4E4"
),
 !!...
)

Custom accent colors

The most important
accent colors

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(
 bg = "#121212", fg = "#E4E4E4",
 primary = "#BB86FC",
 secondary = "#48DAC6"
),
 !!...
)

Custom fonts

Intelligently
download, cache, and

import font files

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(
 bg = "#121212", fg = "#E4E4E4",
 primary = "#BB86FC",
 secondary = "#48DAC6",
 base_font = font_google("Open Sans")
),
 !!...
)

Targeted theming

100s of Bootstrap Sass
variables are available

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(
 bg = "#121212", fg = "#E4E4E4",
 primary = "#BB86FC",
 secondary = "#48DAC6",
 base_font = font_google("Open Sans”),
 "progress-bar-bg" = "orange"
),
 !!...
)

Preview a theme

bslib!::bs_theme_preview(theme)

Real-time theming

bslib!::bs_theme_preview(theme)

Changes captured as code

Real-time theme your app

Requires
Bootstrap 4

library(shiny)

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 !!...
)

server !<- function(input, output) {
 bslib"::bs_themer()
 !!...
}

Implement your own theming
widget

Minimal example

https://rstudio.github.io/bslib/articles/bslib.html#dynamic-theming

Plots don’t reflect theme 😞

Plots don’t reflect theme 😞

Plots rendered by R,
not the browser!!

thematic"::thematic_shiny() 🎉

thematic"::thematic_shiny() 🎉

Plot styling defaults
now informed by CSS

Auto-theme any plotOutput()

Enables auto-coloring
until app exits

library(shiny)
thematic!::thematic_shiny()

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 …
)

shinyApp(ui, function(…) { })

Auto-theme any plotOutput()

Translate fonts as well

library(shiny)
thematic!::thematic_shiny(font=‘auto’)

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 …
)

shinyApp(ui, function(…) { })

Auto-theme any plotOutput()

Works only if using
Google Fonts or fonts

known to R

library(shiny)
thematic!::thematic_shiny(font=‘auto’)

ui !<- fluidPage(
 theme = bslib!::bs_theme(),
 …
)

shinyApp(ui, function(…) { })

The {thematic} R package

• Auto theme R plots in Shiny, R Markdown, and
RStudio.

• Provides a simplified interface for theming
{ggplot2}, {lattice}, and {base} graphics
in any R runtime.

rstudio.github.io/thematic

https://rstudio.github.io/thematic/

Auto-theme plots in RStudio

output:
 html_document:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: "#BB86FC"

Arguments to
bslib!::bs_theme()

Using {bslib} with R Markdown

Same intelligent font importing as:
bs_theme(base_font =

font_google(“Open Sans”))

output:
 html_document:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: "#BB86FC"
 base_font:
 google: Open Sans

Using {bslib} with R Markdown

{flexdashboard},
{pkgdown}, and

{bookdown} support
coming to CRAN soon

output:
 flexdashboard::flex_dashboard:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: "#BB86FC"
 base_font:
 google: Open Sans

flexdashboard-pkg.netlify.app/articles/theme.html

Using {bslib} with R Markdown

https://flexdashboard-pkg.netlify.app/articles/theme.html

Real-time theme Rmd docs

Requires a shiny
run-time

output:
 flexdashboard::flex_dashboard:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: “#BB86FC”
runtime: shiny

```{r} 
bslib::bs_themer() 
``` 


Translate CSS to R plots

Real-time theme flexdashboard

output:
 html_document:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: "#BB86FC"
runtime: shiny

```{r} 
bslib::bs_themer() 
thematic::thematic_rmd() 
``` 

```{r} 
renderPlot(…) 
```


Auto-theme plots in HTML

{thematic} can auto-theme
with {bslib} in Rmd

output:
 flexdashboard::flex_dashboard:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: “#BB86FC”

```{r} 
thematic::thematic_rmd() 
``` 


Auto-theme plots in HTML

{thematic} can auto-theme
with {bslib} in Rmd

output:
 flexdashboard::flex_dashboard:
 theme:
 bg: "#121212"
 fg: "#E4E4E4"
 primary: “#BB86FC”

```{r} 
thematic::thematic_rmd() 
``` 


Theme R plots anywhere

{thematic}’s {bslib}-like
theme interface can be used

anywhere

output:
 pdf_document

```{r} 
thematic::thematic_rmd( 
  bg = “#121212", 
  fg = “#E4E4E4", 
  accent = “#BB86FC” 
) 
``` 


General {thematic} usage

• Three ways to enable globally:
thematic_shiny(), thematic_rmd(), and
thematic_on()
• You can also enable thematic for one-time use

• Auto theming is the default behavior, but you
can also directly specify colors and fonts.

https://rstudio.github.io/thematic/articles/scope.html

Provide colors directly

Provide fonts directly

Any font known to R or any Google Font works so long as {showtext} or {ragg} is installed

https://fonts.google.com/

{thematic} sets global theme() defaults

Plot specific styles takes priority over global defaults

Don’t add complete theme to plot

theme_bw() ‘overrides’ all the global theme() defaults

Set complete themes globally

{thematic} will even ‘respect’ the complete theme’s semantics

Set complete themes globally

{thematic} will even ‘respect’ the complete theme’s semantics

Also works with plotly::ggplotly()

{thematic} also sets global scales

Sets qualitative colorscale to (colour-blind safe) Okabe-Ito

https://jfly.uni-koeln.de/color/

Scale defaults are also customizable

Customize with any vector of color codes

Use {ggplot2} defaults (if you really need to)

In summary

• Use shiny!::bindCache() to avoid redundant computation

• Use bslib!::bs_theme() to customize Bootstrap CSS
• In R Markdown, provide arguments to theme:

• Use bslib!::bs_themer() to customize in real-time

• Translate CSS to R plots with thematic_shiny()

• {thematic}’s auto-theming also works in RStudio
(thematic_on()) and R Markdown (thematic_rmd())

• Use and customize {thematic} themes anywhere by providing
colors and fonts directly

Contact:

 @cpsievert

 carson@rstudio.com

 cpsievert.me

Learn more:
rstudio.github.io/bslib

rstudio.github.io/thematic

Thank you!
Slides:

bit.ly/wb-shiny-2021

mailto:carson@rstudio.com
http://cpsievert.me
https://rstudio.github.io/bslib
http://rstudio.github.io/thematic
https://bit.ly/wb-shiny-2021

